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Abstract

In the last decades, various methods have been proposed for the experimental evaluation of tensile forces acting in tie-

beams of arches and vaults. Moreover, static and dynamic approaches have been formulated to evaluate critical

compressive axial forces and flexural stiffness of end constraints. Adopting Euler–Bernoulli beam model, this paper shows

that, if bending stiffness and mass per unit length of a beam with constant cross-section are known, the axial force and

the flexural stiffness of the end constraints can be deduced by one vibration frequency and three components of the

corresponding mode shape. Finally, data conditions are given to assess a physically admissible identification of the

unknown parameters.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Many engineering applications concern the axial load identification of uniform simply supported beams in
the presence of end rotational elastic constraints. For instance, experimental techniques have more or less
recently been proposed to evaluate tensile forces acting in tie-beams of arches or vaults [1–7] as well as critical
compressive forces of beams with unknown end rotational conditions [8–16]. Usually, geometric beam
properties can be directly evaluated with reasonable accuracy whereas the constraint flexural stiffness or the
axial force cannot easily be obtained by direct measurements. Finite element (FE) formulations coupled with
model updating techniques were proposed for beams and frameworks in the presence of both translational and
rotational elastic supports [17–20]. However, in these formulations, nonuniqueness of estimated parameters
may arise.

In particular, for the evaluation of tensile forces acting in tie-beams, static and dynamic methods have been
proposed. Static methods make use of displacements and deformations of tie-beams subjected to one or more
concentrated loads. For instance, in Refs. [1,2] a static force is applied at mid-span and displacements, as well
as axial deformations at the two opposite sides of the cross-section, are evaluated at three selected locations
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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giving rise to nine distinct measurements; hence, a unique solution for the tensile force and the bending
moments at the end sections is obtained.

In dynamic methods, vice versa, resort is made to vibration tests making use of beam model parameters. In
Refs. [3,4], an approximate method is proposed, using both static deflections and vibration frequencies to
evaluate axial forces in tie-beams. Making use of the first three modal frequencies, a numerical method was
suggested [6], which is based on a minimization procedure of a proper error function; hence, the tensile force
and the beam bending stiffness are obtained. Making use of a FE model, a weighted least-squares estimation
method is presented in Ref. [17], which alternatively uses the two or three lowest frequencies, or the two lowest
frequencies with their corresponding (normalized) mode shapes. Moreover, to determine both plane- and
space-frame forces, sensitivity-based methods are used in Refs. [7,18,19].

The experimental evaluation of critical compressive forces of beams with unknown boundary conditions
was widely investigated as well. In the static approach proposed by Southwell [8,9], the deflection f at mid-
span is measured for different values of the compressive force N and the critical value is extrapolated by means
of a proper plot reporting f versus f/N ratio. In Ref. [10], reduction of natural frequencies as the value of the
compressive force increases is adopted as the ruling parameter and the critical axial load is estimated by
assuming a linear relation between the axial load and the square of natural frequencies (see Eq. (9) reported in
the following). As a matter of fact, approximate formulas of this type need an a-priori estimate of the end
constraint stiffness and are quite accurate for known boundary conditions only [11,12,21]. In Refs. [13,14], the
vibration mode shapes are used to give a kernel approximation for the integral formulation of the (column)
elastic stability problem. In Ref. [15], the vibration mode shapes are used to formulate a FE model for the
critical load estimation. In Refs. [13–15], knowledge of end constraint stiffness is not required; vice versa, in
Refs. [16,22,23] stiffness of end constraints of a prismatic column subjected to null axial load are determined
first and, then, the critical load is analytically derived.

The identification method proposed hereafter is based on the Euler–Bernoulli beam model and assumes
geometric and elastic properties as known parameters. Making use of any natural frequency and of three
displacement components of the corresponding mode shape, it is shown that both axial loads and stiffness of
end flexural springs of a beam subjected to tensile or compression forces can easily be obtained. Moreover,
relations between mode shape displacements and axial resultants are determined, so as to assess proper data
conditions for a physically correct identification of the unknown parameters. As for compression resultants,
the proposed method offers both forces acting in slender beams and flexural constraint stiffness; hence, critical
loads can analytically be evaluated and compared with actual compression forces, giving an experimental
evaluation of the safety factor.

Validation of this technique was obtained by laboratory and in-situ tests, including comparisons [5] with
magnetostriction technique (Barkhausen method). In particular, the proposed method was repeatedly applied
in the consolidation design of vault arcades of monumental buildings where fractured tie-rods were in need of
substitution.

2. Governing equations

The problem of a prismatic single-span beam subjected to a constant axial load, with end elastic rotational
constraints, has been the subject of a massive study in the past years [24,25]. A comprehensive summary of this
work is given in Refs. [21,26–28]. The reference model is constituted by a simply supported prismatic beam of
length L, constrained by two end elastic-springs with k0 and k1 flexural stiffness, subjected to an axial resultant
N (positive sign is assigned to tensile forces). Young’s modulus E, mass per unit length m and cross-section
second area moment J are assumed to be constant, and known as well (Fig. 1).

Making use of the nondimensional coordinate x ¼ X/L and neglecting both rotatory inertia and shear
deformations, circular frequencies o and vibration modes v(x) are ruled by the following eigenvalue problem
[25–28]:

v0000ðxÞ � nv00ðxÞ þ l4vðxÞ ¼ 0; in 0oxo1, (1)

vð0Þ ¼ 0; v00ð0Þ � b0v0ð0Þ ¼ 0; for x ¼ 0, (2a,b)
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Fig. 1. Beam with end flexural constraints and location of the instrumented sections.
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vð1Þ ¼ 0; v00ð1Þ þ b1v0ð1Þ ¼ 0; for x ¼ 1, (3a,b)

where prime means derivation with respect to x and

n ¼
NL2

EJ
; l4 ¼ o2 mL4

EJ
; b0 ¼

k0L

EJ
; b1 ¼

k1L

EJ
. (4a,b,c,d)

Hence, solution to Eq. (1) takes the form

vðxÞ ¼ C1 cos q1xþ C2 sin q1xþ C3 cosh q2xþ C4 sinh q2x, (5)

where

q2
1 ¼

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 4l4

p
� n

� �
; q2

2 ¼
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 4l4

p
þ n

� �
¼ q2

1 þ n. (6a,b)

Boundary conditions (2,3) and frequency characteristic equation (see Eq. (20) reported in the following)
furnish integration constants C1�C4 and q1, respectively. Eqs. (6) yield l2 ¼ q1q2 and in particular, when the
axial resultant n vanishes, l ¼ q1 ¼ q2 is readily obtained. Making use of Eqs. (4a,b) and (6b), any given beam
circular frequency o can be written in the form:

o ¼ 2pf ¼ l2
ffiffiffiffiffiffiffiffi
EJ

mL4

s
¼ q1q2

ffiffiffiffiffiffiffiffi
EJ

mL4

s
¼ q2

1

ffiffiffiffiffiffiffiffi
EJ

mL4

s ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

n

q2
1

r
¼ q1

ffiffiffiffiffiffiffiffi
N

mL2

s ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

q2
1

n

s
. (7)

Considering the first vibration frequency, Fig. 2 shows the plot q1 versus 1=
ffiffiffi
n
p

for a beam subjected to
tensile forces and symmetric boundary conditions with b0 ¼ b1 ¼ b ¼ 0, 2, 10, 20, 50, respectively.

When the end constraint stiffness b goes to zero, coefficient q1 tends to p and is no longer dependent on n.
Hence, Eq. (7) becomes

o1 ¼ p2
ffiffiffiffiffiffiffiffi
EJ

mL4

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

N

Ncr E

r
, (8)

where NcrE ¼ p2EJ/L2 represents the first Eulerian critical load. Coefficient q1 approaches p (for any b) when
1=

ffiffiffi
n
p

becomes small. In other words, if the tensile force is very high, frequencies do not depend on boundary
conditions anymore and the beam behaves as if it were a taut string. Hence, substituting the first
(experimental) vibration frequency o1 into Eq. (8) yields the unknown axial force

N ¼ Ncr E

o2
1

p4
mL4

EJ
� 1

� �
¼ Ncr E

l1
p

� �4

� 1

" #
. (9)

For a beam fully clamped at both ends (b0 ¼ b1 ¼ b ¼N), when the axial force vanishes (n ¼ 0), coefficient
q1 attains a limit value for the first vibration frequency, i.e., q1 ¼ 1.506np ¼ 4.730. Moreover, for 1=

ffiffiffi
n
p

sufficiently small, Rayleigh [24] obtained the simple expression q1 ¼ p 1þ 2=
ffiffiffi
n
p� �

(Fig. 2), which can be
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substituted in Eq. (7) to obtain a first order approximation of o1. A slightly more accurate approximation is
reported in Ref. [29]:

o1;clamped ffi o1;string 1þ
2ffiffiffi
n
p þ 4þ

p2

2

� �
1

n

	 

, (10)

where o1;string ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N=mL2

q
is the first circular vibration frequency of a taut string. The error between

o1,clamped and o1,string is less than 1% if 1=
ffiffiffi
n
p

o0:005. This value has been assumed in test guidelines [30] for
cable force determination to asses the range of validity of string theory. In fact, dynamic behavior of a stay
cable is between the limit cases of a taut string and of a stiff cable with fixed ends [31].

3. Identification of stiffness constraints and axial forces

In order to identify the axial load N and the stiffness k0 and k1 of the end flexural constraints, knowledge is
required of one vibration frequency and the corresponding mode shape at three locations of coordinates X1,
X2 and X3 (Fig. 1). With reference to the nondimensional coordinate x ¼ X/L, three displacements are
assumed to have been determined and denoted by vi ¼ v(xi) for i ¼ 1, 2, 3. Hence, constants C1,y,C4 can be
determined to the accuracy of a constant and the mode shape (5) is finally obtained. In fact, substituting
Eq. (5) into boundary condition (2a) yields C3 ¼ �C1 and the same Eq. (5) reduces to

vðxÞ ¼ C1ðcos q1x� cosh q2xÞ þ C2 sin q1xþ C4 sinh q2x. (11)

Hence, the following linear equation system is obtained:

cos q1x1 � cosh q2x1 sin q1x1 sinh q2x1

cos q1x2 � cosh q2x2 sin q1x2 sinh q2x2

cos q1x3 � cosh q2x3 sin q1x3 sinh q2x3

2
64

3
75

C1

C2

C4

8><
>:

9>=
>; ¼

v1

v2

v3

8><
>:

9>=
>; (12)

Coefficients C1, C2 and C4 are linear functions of the three (experimental) amplitudes v1, v2, v3, and depend
on the unknown parameter n and on constant l through coefficients q1 and q2 reported in Eqs. (6). In its turn,
l depends on the experimental circular frequency o. By imposing the boundary condition (3a), the following
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transcendental equation is obtained, to be solved for the unknown constant n:

C1ðn; lÞðcos q1ðl; nÞ � cosh q2ðl; nÞÞ þ C2ðl; nÞ sin q1 þ C4ðl; nÞ sinh q2ðl; nÞ ¼ 0. (13)

Finally, relations (2b, 3b) yield coefficients b0 and b1:

b0 ¼
v00ð0Þ

v0ð0Þ
¼ �

ðq2
1 þ q2

2ÞC1

C2q1 þ C4q2

, (14)

b1 ¼ �
v00ð1Þ

v0ð1Þ
¼

ðq2
1 þ q2

2ÞðC1 cos q1 þ C2 sin q1Þ

�C1ðq1 sin q1 þ q2 sinh q2Þ þ C2 q1 cos q1 þ C4 q2 cosh q2

. (15)

It should be noted that v1, v2, and v3 are admissible if positive values of nondimensional stiffness coefficients
b0 and b1 are consequently derived.

4. Control points located at the middle and at 1
4
and 3

4
of the beam span

The above formulation can be simplified if control points are assumed at sections having nondimensional
coordinates x1 ¼ 1/4, x2 ¼ 1/2, and x3 ¼ 3/4. In this case, if the mid-section does not coincide with a node of
the assumed mode shape, i.e., if v2 6¼0, Eqs. (13)–(15), respectively, yield

v1 þ v3

v2
¼

1þ 2 cosðq1=4Þ coshðq2=4Þ

cosðq1=4Þ þ coshðq2=4Þ
, (16)

b0 ¼ ðq
2
1 þ q2

2Þ
aðv1=v2Þ � b

cðv1=v2Þ � d
; b1 ¼ ðq

2
1 þ q2

2Þ
aðv3=v2Þ � b

cðv3=v2Þ � d
, (17a,b)

where constants a, b, c, d are given by the following relations:

a ¼ sin q1 sinh
q2

2
� sin

q1

2
sinh q2; b ¼ sin q1 sinh

q2

4
� sin

q1

4
sinh q2, (18a,b)

c ¼ 2 cos
q1

2
� cosh

q2

2

� �
q1 cos

q1

2
sinh

q2

2
� q2 sin

q1

2
cosh

q2

2

� �
, (18c)

d ¼ q1 cos q1 sinh
q2

4
þ sinh

3q2

4
� cos

q1

4
sinh q2

� �

þ q2 cosh q2 sin
q1

4
þ sin

3q1

4
� cosh

q2

4
sin q1

� �
. (18d)

The transcendental equation (16) provides for values of n corresponding to any (experimental) value of l.
Moreover, if the first mode shape gives v1 ¼ v3 or the second mode shape shows v2 ¼ 0, then symmetric
boundary conditions are ascertained.

4.1. Particular cases of end constraint stiffness

Rearranging Eqs. (17), alternative relations for mode shape amplitudes ratios can be obtained:

v1

v2
¼
ðq2

1 þ q2
2Þb� db0

ðq2
1 þ q2

2Þa� cb0
;

v3

v2
¼
ðq2

1 þ q2
2Þb� db1

ðq2
1 þ q2

2Þa� cb1
. (19a,b)

Equating the sum of Eqs. (19) to the right-hand side of Eq. (16) and making use of Eqs. (18) yield the
frequency characteristic equation [26,27], in the form

ðq2
1 þ q2

2Þ
2 sin q1 sinh q2 þ ðb0 þ b1Þðq

2
1 þ q2

2Þðq2 sin q1 cosh q2 � q1 cos q1 sinh q2Þ

þ b0b1 2q1q2ð1� cos q1 cosh q2Þ þ ðq
2
2 � q2

1Þ sin q1 sinh q2

� �
¼ 0. (20)
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In particular, for beams having one pinned end only, e.g., b0 ¼ 0, Eqs. (19) yield

v1 þ v3

v2
¼

b

a
þ
ðq2

1 þ q2
2Þb� db1

ðq2
1 þ q2

2Þa� cb1
. (21)

For simple supported beams (b0 ¼ b1 ¼ 0), Eq. (20) yields the classical result as follows:

sin q1 ¼ 2 cos
q1

2
sin

q1

2
¼ 0 ) q1 ¼ mp; q2 ¼

l2

mp
for m ¼ 1; . . . ;1. (22a,b)

Moreover, using Eqs. (18a,b) and coefficients q1, q2 reported in Eqs. (22b), Eq. (21) can be written in the form

v1 þ v3

2v2
¼

b

a
)

v1 þ v3

2v2
¼

1

2 cosðmp=4Þ
for m odd: (23a,b)

Hence, (v1+v3)/(2v2) ¼ 1=
ffiffiffi
2
p

for m ¼ 1, 7, 9, 15, 17, etc. and (v1+v3)/(2v2) ¼ �1=
ffiffiffi
2
p

for m ¼ 3, 5, 11, 13,
etc. Moreover, referring to even eigenvalues l and making use of coefficients q1, q2 reported in Eqs. (22b), the
constant a given in Eq. (18a) vanishes, the beam mid-section coincides with a node (i.e., v2 ¼ 0) and mode
shape amplitude ratio (23) cannot be defined. Nevertheless, for boundary conditions b0 ¼ 0 and b1 very small,
Eqs. (22) still hold: that is to say that coefficients q1, q2 of such ‘‘nearly pinned’’ beam coincide with the
analogous values of a simply supported beam. Substituting coefficients q1, q2 reported in Eqs. (22b) into
Eq. (16) yields

v1 þ v3

v2
¼

1þ 2 cosðmp=4Þ coshðl2=4mpÞ

cosðmp=4Þ þ coshðl2=4mpÞ
for m even: (24)

In pinned–clamped beams, e.g., b0 ¼ 0 and b1 ¼N, Eq. (20) yields the classical result:

q2 sin q1 cosh q2 � q1 cos q1 sinh q2 ¼ 0 (25)

and, consequently, Eq. (21) becomes

v1 þ v3

v2
¼

b

a
þ

d

c
. (26)

Analogously, in clamped–clamped beams (b0 ¼ b1 ¼N), Eqs. (20) and (21) yield

2q1q2ð1� cos q1 cosh q2Þ þ ðq
2
2 � q2

1Þ sin q1 sinh q2 (27a)

¼ q1 cos
q1

2
sinh

q2

2
� q2 sin

q1

2
cosh

q2

2

� �
q1 sin

q1

2
cosh

q2

2
þ q2 cos

q1

2
sinh

q2

2

� �
¼ 0, (27b)

v1 þ v3

2v2
¼

d

c
for odd eigenvalues l. (28)

For even eigenvalues l, the constant c given by Eq. (18c) is equal to zero.

4.2. Admissible data

From a mathematical point of view, inverse vibration problems require necessary and sufficient conditions
to be satisfied by the spectral data to ensure that a feasible solution is obtained. In fact, two kinds of improper
assumptions can be made. First of all, improper values for mass distribution m, elastic modulus E, and cross-
section second area moment could be adopted. In addition to this, the experimental data are worked out by
means of a mechanical model: i.e., the Euler–Bernoulli beam model. If the beam were not slender enough,
inadmissible final results could be drawn.
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For the problem at hand, to obtain positive values [32] for stiffness coefficients b0 and b1, both numerators
and denominators in Eqs. (17) must have positive or negative sign. In the following, by example, the first case
is reported only.

b0; b1X0 )

a
v1

v2
� bX0

c
v1

v2
� dX0

8>><
>>: and

a
v3

v2
� bX0;

c
v3

v2
� dX0:

8>><
>>: (29a,b)

Eqs. (29) together with Eqs. (16) and (18) imply

a
v1 þ v3

2v2

� �
� bX0

c
v1 þ v3

2v2

� �
� dX0

8>>><
>>>:

)

cos
q1

2

� �
sin

q1

4
p0

q1 sin
q1

2
cosh

q2

2
þ q2 cos

q1

2
sinh

q2

2

� �
sin

q1

4
X0

8><
>: (30a,b)

The two inequalities (30a) provide for admissible data areas reported in Fig. 3. For odd eigenvalues l, admissible
couples (n, l) are delimited by curves corresponding to the limit cases of simply supported and fully clamped
beams. In fact, reducing Eqs. (30a) to two equalities, they coincide with Eqs. (23a) and (28) corresponding to
pinned–pinned and clamped–clamped beams, respectively. Likewise, when bracketed factors in Eqs. (30b) are set
equal to zero, frequency characteristic equation (22a) is re-obtained and Eq. (27b) turns out to be satisfied.

With reference to even eigenvalues l, it worth noting that inequalities (29b) give rise to pinned–clamped
beam equation (26). In fact, reducing Eqs. (30a) to two equalities and summing their left-hand sides, Eq. (26) is
re-obtained. Furthermore, Eq. (24) holding for ‘‘nearly pinned’’ beams can be adopted as an additional curve
to define admissible data areas in n�l plot (Fig. 3). Hence, admissible couples (n, l) are also delimited by
curves corresponding to the limit cases of pinned–clamped beams and ‘‘nearly pinned’’ beams.

Fig. 3 shows the plot of ratio (v1+v3)/(2v2) versus l for both positive and negative values of n. In particular,
dotted lines represent the graph of Eq. (16) for n ¼ �4p2, �p2, 0, 10, 100, 1000, 10000. Moreover, thin solid
lines follow from Eqs. (23) and (28) and Eqs. (24) and (26), for odd and even eigenvalues l, respectively. Also,
Fig. 3 reproduces admissible data areas corresponding to the first nine eigenvalues and thick solid lines
represent couples satisfying inequalities (29a) for some particular values of n. For simply supported beams,
(b0 ¼ b1 ¼ 0), the eigenfunctions coincide with the Eulerian critical shapes:

vðxÞ ¼ C sin mpx; m ¼ 1; . . . ;1. (31)
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In this case, Eq. (23b) holds for any given value of n and the first vibration frequency vanishes for n ¼ �p2

corresponding to the first Eulerian critical load. Moreover, it is to be noted that the minimum value for n

corresponds to the first critical load of a fully clamped beam (b0 ¼ b1 ¼N) having nondimensional value
n ¼ �4p2 and mode shape:

vðxÞ ¼ Cð1� cos 2pxÞ. (32)

In fact, Eq. (32) yields (v1+v3)/2v2 ¼ 0.5 and, consequently, the first vibration frequency vanishes for the
couple [n, (v1+v3)/2v2] ¼ [�4p2, 0.5].

Fig. 4 magnifies the area no. I of Fig. 3, reproducing Eq. (16) for some particular values of the
nondimensional axial force n. Therefore, Fig. 4 represents a plot where the point of experimental coordinates
[(v1+v3)/2v2, l] can be located; hence, the curve NL2/EJ containing the experimental point yields the unknown
value of the axial force N.

It can be observed that, for n410000, i.e., for 1=
ffiffiffi
n
p

o0:01, the dotted lines corresponding to the limit cases
of simply supported and fully clamped beams, tend to coincide. Hence, it is confirmed that, for high values of
N, the evaluation of tensile forces does not depend on the boundary conditions and Eq. (9) can usefully be
employed.

5. Laboratory tests

In civil or mechanical engineering, when a single span of a continuous beam is to be analyzed, the adjacent
beams behave as elastic constraints with respect to the beam under investigation. Therefore, it is usual to
idealize the adjacent beams as rotational springs and the beam under investigation as if it were constrained by
elastic rotational springs at one or both ends. This is the reason why a reference model of a beam resting on
rigid supports and constrained by two end rotational springs is commonly adopted. In the laboratory tests
reported in the following, the end rotational springs were brought back to adjacent spans of a continuous
beam and the stiffness values of the rotational springs were assumed to coincide with the flexural stiffness of
the adjacent beams. In the case of a vault tie-rod restrained by lateral masonry walls, the masonry behavior at
the rod ends is modelled again with elastic rotational springs which reproduce the restraining effect of the
masonry walls. In fact, as far as vibrations imply very small deflections, a purely elastic model can be
acceptable.
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Fig. 5. Beam experimental model for tensile and compression tests.
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For the laboratory tests, tie-rods or slender box beams were adopted. At one end, an hydraulic jack
was adopted to assign the axial force and, at the other end, a 100 kN load cell was placed, with accuracy of
2mV/V. For tensile tests, a rod with 20mm diameter was adopted and Young’s modulus E ¼ 196GPa and
density r ¼ 7850 kg/m3 were experimentally evaluated. For compression tests, a slender box beam with section
80� 30� 3mm3 was adopted and Young’s modulus E ¼ 206GPa and density r ¼ 7850 kg/m3 were
analogously obtained. Two additional supports were introduced at intermediate section so as to have two
outer spans simulating end constraints of variable stiffness (Fig. 5). As for the end springs, the analytical
investigation considered the limit cases (ks ¼ kd ¼ 0) and (ks ¼ kd ¼N) only because of the difficulty of
evaluating the rotational stiffness introduced by the experimental equipment.

For the limit cases considered, the stiffness coefficients b0 and b1 of the central beam take the values [8,33]:

b0 ¼
3L

Ls

1

I1ðasÞ
for ks ¼ 0; b0 ¼

4L

Ls

3I1ðasÞ

4I21ðasÞ � I22ðasÞ
for ks ¼ 1, (33a,b)

b1 ¼
3L

Ld

1

I1ðad Þ
for kd ¼ 0; b1 ¼

4L

Ld

3I1ðadÞ

4I21ðad Þ � I22ðad Þ
for kd ¼ 1, (34a,b)

where as ¼ Ls=L
ffiffiffi
n
p

, ad ¼ Ld=L
ffiffiffi
n
p

, and

I1ðaÞ ¼
3

a
1

tanh a
�

1

a

� �
; I2ðaÞ ¼

6

a
1

a
�

1

sinh a

� �
for a ¼ as; ad . (35a,b)

When the axial resultant N vanishes, i.e., n ¼ 0, coefficients as, ad are equal to zero and Eqs. (35) reduce to
I1(0) ¼ I2(0) ¼ 1. Consequently, Eqs. (33) and (34) yield the stiffness coefficients [33] for simply supported
(ks ¼ kd ¼ 0) and hinged–clamped (ks ¼ kd ¼N) beams, respectively:

k0 ¼
3EJ

Ls

; k1 ¼
3EJ

Ld

for ks ¼ kd ¼ 0; k0 ¼
4EJ

Ls

; k1 ¼
4EJ

Ld

for ks ¼ kd ¼ 1. (36a,b,c,d)

Three piezoelectric accelerometers PCB/353B18, having sensitivity of 10mV/g and weight of 1.8 g, were
fastened in the central span, at equal distances, by means of metallic wrappers. Dynamic tests were performed,
hitting the instrumented sections with an impact hammer PCB/086C04, able to measure a pulse up to 4.4 kN
with sensitivity of 1.2mV/N. All the instruments were connected to a signal conditioner and, finally, to a PC
data acquisition system. Tests were performed hitting, three times, each of the three instrumented sections of
the central span. Fig. 6 shows an example of the time histories and the frequency spectra of the impact
hammer and of three accelerometers for a given pulse. As is known [34,35], the ratio between the Fast Fourier
Transform (FFT) of the acceleration ai(t) and the FFT of the pulse Fj(t) yields the inertance Frequency
Response Function (FRF) Hij. Hence, the inertance FRF Hij at section xi for an impulse load at section xj [25],
is given by

HijðoÞ ¼ �
o2

mL

X1
r¼1

v
ðrÞ
i v
ðrÞ
j

.
vðrÞ
 2

o2
r � o2 þ 2izroro

; (37)

where or, zr, v(r) are the circular natural frequency, the damping ratio defined by c/(2mor) and the rth mode
shape, respectively and, finally, vðrÞ

 2 ¼ R 1
0

vðrÞ
� �2

dx. For a low damping ratio, when the vibration
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Fig. 6. Time history and frequency spectrum for the impact hammer and three instrumented sections.
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frequencies are not very close to each other, in the neighborhood of a given circular frequency os, Eq. (37)
admits the following approximation:

HijðoÞ ffi �
o2

mL

v
ðsÞ
i v
ðsÞ
j

.
vðsÞ
 2

o2
s � o2 þ 2izsoso

for offi os. (38)

Then, the contributions of modes with different circular frequencies can be neglected, and the frequency
domain analysis of the vibrating beam reduces to that of an independent simple oscillator. Consequently, the
peak-picking method [34,35] can usefully be adopted. In other words, natural frequencies are located at each
peak of the inertance moduli (Fig. 6) and the damping value can be estimated with the half-power method [34].
As a matter of fact, for the first three frequencies of the beam investigated, damping ratios turned out to be less
than 5% (Fig. 6) so as to justify the use of Eq. (38). Finally, Eq. (38) shows that the (sth) eigenvalue
components are proportional to the inertance modulus peaks. Then, hitting the jth instrumented section, the
following ratios are obtained:

v
ðsÞ
1

v
ðsÞ
2

¼
H1jðosÞ
�� ��
H2jðosÞ
�� �� ; vðsÞs

v
ðsÞ
2

¼
H3jðosÞ
�� ��
H2jðosÞ
�� �� . (39)
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Fig. 7. Experimental tensile test rig. The rod is pulled by the hydraulic jack (a). The hammer hits the rod in the proximity of an

instrumented section (b).

Table 1

Tensile vibration tests. Average of the experimental parameters

Test Nx (kN) f1 (Hz) v1/v2 v3/v2

1 1.45 6.66 0.624 0.611

2 2.97 7.63 0.626 0.621

3 4.95 8.70 0.633 0.622

4 10.22 10.91 0.647 0.631

5 30.15 16.76 0.668 0.659

6 50.00 20.98 0.680 0.663

Table 2

Tensile vibration tests. Experimental and estimated parameters

Test Experimental data Estimated parameters

l (v1+v3)/2v2 na Na (kN) b0 b1

1 4.69 0.618 15.09 1.64 13.4 12.9

2 5.02 0.624 28.98 3.25 14.7 12.9

3 5.36 0.628 45.84 5.20 16.0 15.0

4 6.01 0.639 89.78 10.28 17.7 17.7

5 7.44 0.663 259.88 29.89 23.2 18.8

6 8.33 0.671 427.15 49.16 26.1 25.7
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Alternative identification techniques determine the modal parameters by means of output-only
measurements, deriving from unknown inputs. In this context, knowledge of the excitation is usually
replaced by the assumption that the system is excited by white Gaussian noise [35]. For instance, the
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stochastic-subspace-identification technique makes it possible to determine closely spaced frequencies,
corresponding to in-plane and out-of-plane mode shapes. This method is applied for testing stay cables using
ambient vibration measurements [31].

5.1. Tensile tests

As for tensile tests (Fig. 5), the case Ls ¼ 797mm, L ¼ 3625mm, and Ld ¼ 985mm is reported in the
following. Fig. 7 shows the rod subjected to the vibration test. Tables 1 and 2 show measured and estimated
mean parameters, respectively. Fig. 8a shows excellent agreement between measured and estimated loads Nx

and Na. In particular, the nine experimental values of the tensile forces are very close to each other for each of
the assigned forces Nx, giving a highly reliable average value for Na (Fig. 8a).

Fig. 9 shows the (estimated) variation of the end constraint stiffness b0 and b1 versus the tensile force N.
Dotted lines correspond to the limit values given by Eqs. (33) and (34). Cross-symbols correspond to single
test evaluations and solid lines represent the average of the nine experimental data. It can be noted that, at the
beam end in front of the load cell, the estimate of the elastic parameter (b0) is quite reasonable. Vice versa, at
the opposite end in front of the hydraulic jack, b1 estimation is not satisfactory at all. Yet, if b1 is calculated
10

0

-10

-20

-30

-40

-50

-60

-70

N
a 

[k
N

]

100
0

10

20

30

40

50

60

N
a 

[k
N

]

0
Nx [kN]

10 20 30 40 50 60 -100 -20 -30 -40 -50 -60 -70

Nx [kN]

Fig. 8. Comparison between measured (Nx) and estimated (Na) forces. Tensile (a) and compression (b) vibration tests.

0

10

20

30

40

50

60

β 1
 =

 k
1 

L
/E

J

0
0

10

20

30

40

50

60

β 0
 =

 k
0 

L
/E

J

0

(0.995 v1, v2, 1.02 v3)

(v1, v2, v3)

100 200 300 400 500

n = NL2/EJ n = NL2/EJ

100 200 300 400 500

Fig. 9. Tensile vibration tests. End constraint stiffness b0 (a) and b1 (b) of the central span versus the tensile force N.



ARTICLE IN PRESS

Table 3

Compression vibration tests. Average of the experimental parameters

Test Nx (kN) f1 (Hz) v1/v2 v3/v2

1 0.00 31.05 0.612 0.630

2 �10.00 29.42 0.612 0.625

3 �20.00 27.82 0.610 0.622

4 �30.00 26.17 0.607 0.618

5 �40.00 23.96 0.605 0.618

6 �50.00 21.85 0.601 0.612

7 �60.00 20.14 0.599 0.607

Table 4

Compression vibration tests. Experimental and estimated parameters

Test Experimental data Estimated parameters

l (v1+v3)/2v2 na Na (kN) b0 b1

1 4.18 0.621 0.32 1.09 11.5 9.6

2 4.07 0.619 �2.69 �9.26 11.2 9.9

3 3.96 0.616 �5.56 �19.15 11.3 10.0

4 3.84 0.613 �8.49 �29.27 11.5 10.4

5 3.68 0.611 �11.56 �39.84 11.3 10.0

6 3.51 0.606 �14.86 �51.20 11.7 10.6

7 3.37 0.603 �17.18 �59.21 11.8 11.0
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with the arbitrary values 0.995 v1/v2 and 1.02 v3/v2, the corresponding line of Fig. 9 is obtained, which is much
closer to the limit (dotted) lines. Hence, identification of boundary conditions is clearly ill conditioned.
Analogous results were obtained for beams with different span configurations.

5.2. Compression tests

As for compression tests (Fig. 5), the case Ls ¼ 500mm, L ¼ 2380mm, and Ld ¼ 560mm is reported in the
following. The central beam to be analyzed was given slenderness sufficient to exclude inelastic buckling.
Tables 3 and 4 show measured and estimated mean parameters, respectively. Fig. 8b shows a good agreement
between measured and estimated loads Nx and Na for each test performed. Fig. 10 shows the (estimated)
variation of the end constraint stiffness b0 and b1 of the central span for a decreasing compressive force N.
Cross-symbols correspond to single test evaluations and solid lines represent the average of the nine
experimental data. The experimental values for b0, b1 are far away from the analytical values corresponding to
the limits given by Eqs. (33) and (34). Furthermore, the expected reduction of the elastic parameters b0 and b1
for decreasing values of N is not confirmed. Nevertheless, the variation of these parameters is quite small and
the following mean values will be adopted in next section:

b0;mean ¼ 11:5; b1;mean ¼ 10:2. (40a,b)

6. Buckling load evaluation

As is known, Newmark gave a good approximation for the critical load of a single span, slender,
compressed beam in the form [8,9]

Ncr E ¼ w
p2EJ

l2
where w ¼

ð0:4þ b�10 Þð0:4þ b�11 Þ

ð0:2þ b�10 Þð0:2þ b�11 Þ
. (41a,b)
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Hence, the evaluation of the end constraint stiffness b0 and b1 could open the door into the experimental
evaluation of the buckling load NcrE by means of vibration tests. In fact, substituting Eqs. (40) into Eqs. (41),
the corresponding buckling loads is NcrE,dynamic ¼ 96.4 kN.

Aimed at the same goal, the static method proposed by Southwell [9] can profitably be used to obtain an
experimental comparison term. In fact, for a beam subjected to a compressive force N (Fig. 11a), this method
yields an estimate of the buckling load in the form

f

ð�NÞ
¼

f

Ncr E

þ
f 0

Ncr E

, (42)

where f is the mid-section displacement and f0 represents the initial imperfection. Hence, reporting f/(�N) and
the same f on the coordinate axes, the inclination of the straight line in Fig. 11b gives the value 1/NcrE and the
intersection with the f/(�N) axis yields the ratio f0/NcrE. Results of the static test gave f0 ¼ 4.32mm and
NcrE,static ¼ 93.1 kN, with an error of about 3.5% with respect to NcrE,dynamic. Therefore, the experimental
evaluation of constraint rotational stiffness of a slender beam may represent a significant procedure for the
evaluation of the axial buckling load.
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Fig. 12. View (a) and plan (b) of the pavilion vault arcade of Palace Ludovico il Moro in Ferrara.
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7. In-situ applications

The first case reported hereafter concerns the 16 century Palace Ludovico il Moro in Ferrara (Italy) which,
since the middle of the past century, has housed the civic archaeological museum [5].

In the south, two story, wing of the building, there is a pavilion vault arcade, of 5.50� 12.00m2 resting on
two columns and two semi-columns anchored by four forged iron tie-rods having a 30mm diameter (Fig. 12a).
Not long ago, one of tie-beams (named no. 1 in Fig. 12b) exhibited a complete fracture in the proximity of a
semi-column giving rise to a 28mm drift of the abutments (accompanied by quite evident cracks at the vault
intrados). The remaining rods were subjected to vibration tests to verify their possible overloading and to
assess the tensile force the new rod was to be given. The tie-beams no. 2, 3, 4 showed tensile forces of 86, 90,
81 kN, respectively, and any possible overloading was consequently excluded. Hence, the new tie-rod was
given a tensile force of 90 kN by means of a torque wrench acting at the two ends alternatively.

The vibration tests repeated 30 days later, with a more or less similar weather, revealed a reduction of the
assigned tensile force of about 50% whereas the adjacent tie-rod showed a reduction of 5 kN.

The second case concerns the 16 century monastery of S. Gregorio Armeno located in the oldest area of
Naples (Italy), once occupied by the forum of the Greek-Roman city. The church foundations probably go
back to the fifth century A.C. but the present arrangement of the adjacent cloister was deliberated by the
Fathers of Trento Council in 1563. The cloister is enclosed by cross vault arcades resting on lavic rock
columns. Sudden intrados longitudinal cracks accompanied by out-of-plumb of columns required a timely
inspection which showed the disjunction of three contiguous tie-rods (with 30mm diameter) from the relevant
anchor devices. Once again, an accurate reconnaissance of the tensile forces of the surviving tie-rods was
necessary to establish the forces the replacement rods were to be given. Actually, different values of the tensile
forces allowed to distinguish the original tie-rods from those inserted at the corners of the cloister in later
times. The replacement tie-rods were given a relatively small tensile force of 30 kN; in fact, small dead loads
were resting on the arcades. At the time being of the present account, it will not be surprising that later
vibration tests showed that the new tie-rods had adapted to tensile forces of about 4 kN. A prudent suggestion
follows from these experiences: a delayed check of the assigned force should be performed before the tie-rod
anchor devices be hidden in the masonry. In short, masonry can unexpectedly resist our conjectures and this is
a further reason to recognize that a proper and methodical monitoring is the only way to control its real
behavior and, hopefully, to learn from it.

8. Conclusions

An analytical approach was presented, which opens the road into an experimental procedure for evaluating
tensile forces in vault or arch tie-rods, or compression forces in slender beams. The equipment is constituted
by an impact hammer, three piezoelectric accelerometers, a signal conditioner, and a PC for data acquisition.
The inertance function evaluated at three instrumented sections reduces the search for the modal parameters
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to the analysis of 1 dof system oscillating with its own natural frequency. Having determined modal
parameters for a single oscillation mode, the solution to a transcendental equation yields the axial force
together with the rotational stiffness of the end constraints. Laboratory tests showed excellent agreement
between the estimated (tensile and compression) forces and the corresponding values measured by a load cell.
Stiffness experimental evaluation of the end rotational constraints may open the way into the experimental
evaluation of the axial buckling load for slender beam by means of vibration tests.

At the moment, the procedure holds under the condition that no displacement of the beam ends occurs. For
instance, this is the case for nonsway frames. A further development is under way to formulate a more general
procedure allowing for lateral displacements at the beam ends. Hence, the procedure will be suitable for any
slender element of any framed or trussed structure.
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